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Abstract. Six change detection procedures were tested using Landsat Multi-
Spectral Scanner (MSS) images for detecting areas of changes in the region of
the TeÂ rminos Lagoon, a coastal zone of the State of Campeche, Mexico. The
change detection techniques considered were image di� erencing, vegetative index
di� erencing, selective principal components analysis (SPCA), direct multi-date
unsupervised classi® cation, post-classi® cation change di� erencing and a combina-
tion of image enhancement and post-classi® cation comparison. The accuracy of
the results obtained by each technique was evaluated by comparison with aerial
photographs through Kappa coe� cient calculation. Post-classi® cation compar-
ison was found to be the most accurate procedure and presented the advantage
of indicating the nature of the changes. Poor performances obtained by image
enhancement procedures were attributed to the spectral variation due to di� er-
ences in soil moisture and in vegetation phenology between both scenes. Methods
based on classi® cation were found to be less sensitive at these spectral variations
and more robust when dealing with data captured at di� erent times of the year.

1. Introduction

Several regions around the word are currently undergoing rapid, wide-ranging
changes in land cover. Much of this activity is centred in the tropics in such countries
as Brazil, Columbia, Indonesia, Mexico, the Ivory Coast, Venezuela and Zaire (FAO
1995). These changes in land cover, in particular tropical forest clearing, have
attracted attention because of the potential e� ects on erosion, increased run-o� and
¯ ooding, increasing CO2 concentration, climatological changes and biodiversity loss
(Myers 1988, Fontan 1994). Remote sensing provides a viable source of data from
which updated land-cover information can be extracted e� ciently and cheaply in
order to inventory and monitor these changes e� ectively. Thus change detection has
become a major application of remotely sensed data because of repetitive coverage
at short intervals and consistent image quality.

The basic premise in using remote sensing data for change detection is that
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changes in land cover result in changes in radiance values and changes in radiance
due to land cover change are large with respect to radiance changes caused by others
factors such as di� erences in atmospheric conditions, di� erences in soil moisture and
di� erences in sun angles. Vegetation diversity and interspersion of land cover is high
in the humid tropics, and spectral re¯ ectance characteristics of mixed vegetation are
often not distinct, causing problems in digital classi® cations (Roy et al. 1991, Sader
et al. 1991). For example, workers have reported spectral confusion between undis-
turbed and disturbed forests (Franklin 1993) and between successional forest classes
and pasture containing trees (Sader et al. 1990). Similar confusion is also expected
when trying to discriminate natural grassland (savannah) from pasture lands.
Therefore, change between land covers which present similar spectral signatures is
di� cult to detect.

The impact of sun angle di� erences and vegetation phenology di� erences may
be partially reduced by selecting data belonging to the same time of the year (Singh
1989). However, it may be extremely di� cult to obtain multi-date data of the same
time of the year, particularly in tropical regions where cloud cover is common. For
example, one of the objectives of the North American Landscape Characterization
(NALC) Project was to produce t̀riplicates’ consisting of Landsat Multi-Spectral
Scanner (MSS) images for the years 1973, 1986 and 1992 (plus or minus one year)
for the USA and Mexico. In Mexico, because of the low number of good quality
scenes, images of the triplicate often do not belong to the same time of the year.
Moreover, in many cases it had even been necessary to get images dated outside the
3-year intervals previously de® ned and to mosaic various images to obtain a cloud-
free scene. Table 1 shows that di� erences between the dates of the NALC triplicate
images for southern Mexico (path 18 to 25) are, on average, higher than 2 months.
The problem of availability of cloud-free images in tropical regions is very common
and has been reported by many authors (Jha and Unni 1982, Ducros-Gambart and
Gastellu-Etchegorry 1984, Nelson and Holben 1986, Pilon et al. 1988, Alwashe
and Bokhari 1993). Consequently, the identi® cation of a robust change detection-
methodology is essential for dealing with multi-date data in these regions.

An analysis of the literature reviewed indicates that (1) there are very few studies
concerned with comparative evaluation of change detection techniques, (2) the
majority of these comparative studies have not supported their conclusion by quantit-
ative analysis of the results (Singh 1989) and (3) many studies have been carried out
with images of the same time of the year. The purpose of this study is to compare
the relative e� ectiveness of di� erent techniques in detecting land cover changes in a
tropical coastal zone using images captured at di� erent times of the year.

Table 1. Di� erences in the dates of NALC triplicate images of south-eastern Mexico. Values
are expressed in number of days of di� erence.

Decades

1970± 1980 1970± 1990 1980± 1990

Mean 68.2 81.3 59.2
Maximum 182 177 154
Minimum 1 2 3
SD 51.9 50.6 48.7

SD, standard deviation.
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2. Study area

The area of study covers a part of the TeÂ rminos Lagoon region, State of
Campeche, Mexico. It is located in the south-east of Mexico, between 18ß 00 ¾ and
18ß 55 ¾ N latitude and 90ß 55 ¾ and 92ß 06 ¾ W longitude (® gure 1). Land use within
this area is divided principally among mangrove, evergreen tropical forest, wetlands,
pasture-land and agriculture. Rates of deforestation in Campeche are high, particu-
larly in the coastal zone (Mas 1996, Mas et al. 1997). Much of the land surrounding
the lagoon has been deforested for cattle ranching and rice farming (Isaac-MaÂ rquez
1993), and, recently, aquaculture and petroleum exploration have begun in the
region. A large part of the study area has been protected since 1994 (YaÂ nÄ ez et al.
1993). The climate is hot and humid with annual rainfall ranging from 1300 to
1800 mm and average temperature of about 26ß C (CNA 1995). Based on precipita-
tion, river discharge, winds and temperature, three seasons were identi® ed: the dry
season from February to May, a tropical rainy season from June to October, and
the nortes season with periodic rains from October to February (YaÂ nÄ ez-Arancibia
and Day 1988).

Figure 1. The study area.
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3. Data and methodology

The Landsat MSS images used in the present study belong to the NALC triplicate
dataset and have been geometrically and radiometrically corrected by the EROS
Digital Image Processing Centre. The 1970s scene was d̀estriped’ to compensate for
variations in the radiometric response of the individual detectors. The images were
corrected and resampled, using cubic convolution, to a UTM projected output image
composed of 60 m Ö 60m pixels, with an root mean square error (rmse) of less than
1.0 pixel. A 2045 columns by 1687 lines sample subsection corresponding to the
Lagoon of TeÂ rminos and its surrounding area was extracted from 15 February 1974
and 29 April 1992 Landsat MSS scenes (path 21, row 47). Digital image processing
was performed on a SUN workstation using ERDAS software.

3.1. Radiometric normalization
Dealing with multi-date image datasets requires that images obtained by sensors

at di� erent times are comparable in terms of radiometric characteristics. This usually
does not happen even for images generated by the same sensor for several reasons
such as change in radiometric performance over time, variation in solar illumination
conditions, atmospheric scattering and absorption and changes in atmospheric condi-
tions (presence of clouds). Therefore, if any two datasets are to be used for quantitat-
ive analysis based on radiometric information, as in the case of multi-date analysis
for detecting surface changes, they ought to be adjusted to compensate for radiometric
divergence. There are two ways to achieve these radiometric compensation: (1) per-
forming radiometric calibration, converting the entire dataset from digital number
values into ground re¯ ectance values and, (2) performing a relative radiometric
normalization between the multi-date images. The ® rst way is generally more complex
than the second and is usually unnecessary for the simple purpose of change detection.
Conventional techniques for applying relative radiometric normalization use statist-
ical parameters of the whole scene or selected subsets believed to be spectrally stable.
However, these techniques do not compensate all atmospheric e� ects, particularly
when clouds are present in one of the images, or require some degree of human
intervention in selecting control pixels. For this reason, we used a method based on
the Automated Scattergram-Controlled Regression developed by Elvidge et al. (1995)
and successfully applied in identifying cover changes in the Amazon by CroÂ sta et al.
(1995). The same spectral band of two dates was used in order to produce a
scattergram and de® ne the regression line. The following step was to de® ne the
regions of ǹo-change’ using the scattergram. As both images were taken during the
dry season, spectral changes due to phenological di� erences of vegetation such as
mangroves, evergreen forest, pasture land and wetlands were expected to be lower
than changes due to land cover transformation or to the presence of clouds. For this
reason, the pixels close to the regression line were assumed to be the ones without
changes between the two dates and therefore used to perform the radiometric
normalization. A histogram-matching procedure was performed in order to carry
out the relative image-to-image radiometric normalization. Histograms of the digital
numbers within the two multi-date images, master and slave, were computed.
Histograms were based on values from pixels belonging to the subarea that has been
selected and labelled as ùnchanged’ on the scattergram analysis.

3.2. Change detection
Researchers involved in change detection studies using satellite images data have

conceived a large range of methodologies for identifying environmental changes.
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Change detection procedures can be grouped under three broad headings character-
ized by the data transformation procedures and the analysis techniques used to
delimit areas of signi® cant changes: (1) image enhancement, (2) multi-date data
classi® cation and (3) comparison of two independent land cover classi® cations (Mas
1998). The enhancement approach involves the mathematical combination of
imagery from di� erent dates such as subtraction of bands, rationing, image regression
or principal components analysis (PCA). Thresholds are applied to the enhanced
image to isolate the pixels that have changed. The direct multi-date classi® cation is
based on the single analysis of a combined dataset of two or more di� erent dates,
in order to identify areas of changes. The post-classi® cation comparison is a compar-
ative analysis of images obtained at di� erent moments after previous independent
classi® cation. In the present study, six change detection procedures were tested.

3.2.1. Image di� erencing
In this method, registered images acquired at di� erent times are subtracted to

produce a residual image which represents the change between the two dates. Pixels
of no radiance change are distributed around the mean, while pixels of radiance
change are distributed in the tails of the distribution (Singh 1986). Two subtracted
images were created for bands 2 and 4, respectively. Data transformations were
con® ned to these bands because they are considered to be the most useful for
discriminating forest canopy and vegetation alterations (Nelson 1983).

3.2.2. Vegetation index di� erencing
This technique used a data transformation shown to be related to green biomass

(Tucker 1979). The Normalized Di� erence Vegetation Index (NDVI) is calculated
by NDVI= (NIRÐ RED)/(NIR+RED) where NIR is the near-infrared band
response for a given pixel, MSS band 4 and RED is the red response, MSS band 2.
The vegetation index was calculated for both dates and then subtracted (Nelson
1983, Singh 1986).

3.2.3. Selective Principal Components Analysis
In the Selective Principal Components Analysis (SPCA), only two bands of the

multi-date image are used as input instead of all bands. By using only two bands,
the information that is common to both is mapped to the ® rst component and
information that is unique to either one of the two bands (the changes) is mapped
to the second component (Chavez and Kwarteng 1989). Principal components are
usually calculated from a variance± covariance matrix. The standardization of the
covariance matrix into a correlation matrix by dividing by the appropriate standard
deviation reduces all the variables to equal importance as measured by scale. Singh
and Harrison (1985) compared standardized and unstandardized PCA and reported
substantial improvement of signal-to-noise ratio and image enhancement by using
standardized variables. Selective standardized principal components analysis was
performed using bands 2 and 4.

3.2.4. Direct multi-date classi® cation
The direct multi-date classi® cation is based on the single analysis of a combined

dataset of the two dates in order to identify areas of changes (Singh 1986). Classes
where changes are occurring are expected to present statistics signi® cantly di� erent
from where change did not take place and so could be identi® ed. Unsupervised
classi® cation was carried out using the ISODATA method of the ERDAS software
which uses spectral distance and iteratively classi® es the pixels, rede® nes the criteria
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for each class, classifying again, so that the spectral distance patterns in the data
gradually emerge (ERDAS 1991).

3.2.5. Post-classi® cation analysis
The most obvious method of change detection is a comparative analysis of

spectral classi® cations for times t1 and t2 produced independently (Singh 1989). In
this context it should be noticed that the change map of two images will only be
generally as accurate as the product of the accuracies of each individual classi® cation
(Stow et al. 1980). Accuracy of relevant class changes depends on spectral separability
of classes involved. In the present study, Landsat MSS data of both dates were
independently classi® ed using the maximum likelihood classi® er.

3.2.6. Combination image enhancement /post-classi® cation analysis
In this method, the change image produced through an enhancement procedure

is recoded into a binary mask consisting of areas that have changed between the
two dates. The change mask is then overlaid onto the date 2 image and only those
pixels that were detected as having changed are classi® ed in the date 2 imagery. A
traditional post-classi® cation comparison can then be applied to yield from-to change
information. This method may reduce change detection errors and provides detailed
from-to change information (Pilon et al. 1988, Jensen 1996).

3.3. Accuracy assessment
In order to determine the accuracy of each change image a random sample of

180 points was selected within the study area. Points which fell in areas corresponding
to clouds, to the lagoon or to the border between di� erent land covers were eliminated
resulting ® nally in 106 points. The nature of change within an area of 200 m around
the selected points were determined by comparing 1972 and 1990 aerial photographs
scale 1575000, 1978 and 1992 vegetation maps and colour composites of the two
images. For each point, two levels of information were determined: the ® rst level
involved only c̀hange/no change’ binary information and the second level described
the nature of change (from-to information). This information was compared to the
change detection techniques results through confusion matrices.

In the application of digital change detection techniques based on image enhance-
ment, it was necessary to establish a thresholding level in order to de® ne land cover
change. All histograms were examined and the mean and standard deviation values
for each dataset were calculated. Various standard threshold levels were applied to
the lower and higher tail of each distribution in order to ® nd the threshold value
that produced the highest change classi® cation accuracy. The relationship between
change classi® cation accuracy and threshold for a given transformed band was
studied by generating change images for thresholds ranging from 0.25 to 2.00 stand-
ard deviations, at 0.25 standard deviation intervals. As a following step, thresholds
every 0.1 standard deviation around the initial empirical maximum were tested. If
the distributions are non-normal and functions of the standard deviations are used
to delimit change from no change, the areas delimited on either side of the mode
are not equal. Therefore, the error rates on either side of the mode are not equal.
For this reason, an attempt was made to determine the two threshold boundaries
using two independent steps. In order to establish the optimal threshold value applied
to the lower tail of the distribution, pixels which value was lower than the threshold
level L1 were considered as changed, pixels whose value ranged between the threshold
level L1 and the mean M were classi® ed in the no-change category and pixels whose
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value was higher than the mean were classi® ed as no data (® gure 2, step 1). Various
threshold levels were applied in order the ® nd the threshold value that produced the
highest change classi® cation accuracy. A similar procedure was applied to determine
the threshold value of the higher tail of the distribution L2 ( ® gure 2, step 2).

Most accuracy indices are biased and a� ected by the ratio between the number
of reference data points of the change and the no-change category (Nelson 1983).
Fung and Ledrew (1988) examined the use of di� erent accuracy indices, including
overall, average and combined accuracies and the Kappa coe� cient of agreement
to determine an optimal threshold level for changes detection images. They recom-
mended the Kappa coe� cient because it considers all elements of the confusion
matrix.

4. Results

4.1. Radiometric normalization
Statistics of the subscenes were calculated. It must be noted that the 1992 image

presented some clouds and that there were signi® cant radiometric di� erences between
both dates (table 2). The values of 1974 band 2 were regressed against 1992 band 2
using a least-squares regression. The predicted values of 1992 obtained from the
regression line were then compared with real 1992 band 2 values by subtraction. If
the di� erence was higher then a threshold value, pixels were considered as changed
and were excluded from the histogram calculation. A threshold value of 10 allowed
the isolation of 5% of the pixels which present more important spectral variation

Figure 2. Two-step thresholding method.

Table 2. Statistics of the 1974 and 1992 images before and after radiometric normalization.

Band 1 Band 2 Band 3 Band 4

Before radiometric normalization
Mean 1974 25.51 15.20 13.14 26.84
Mean 1992 32.52 28.18 37.15 38.24
SD 1974 8.01 5.23 13.14 17.82
SD 1992 9.20 7.74 17.44 22.33

After radiometric normalization
Mean 1974 matched 32.21 28.01 36.91 36.91
SD 1974 matched 9.55 8.51 16.56 23.32

SD, standard deviation.
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between the two dates. These pixels corresponded mostly to the clouds of 1992 image
and to some areas of the lagoon which presented a di� erent grade of turbidity
between the two dates. The histogram of the 1974 image was matched to that of the
1992 image because it presented a signi® cantly smaller range of data values than the
1992 image. The histogram matching was carried out using histograms based only
on values from pixels classi® ed without change in the regression analysis. After
normalization, statistics of the 1974 image were very similar to the 1992 image
(table 2).

4.2. Change detection
4.2.1. Image enhancement procedures

The vegetation index was calculated for both dates. Then three residual images
were produced by subtracting band 2, band 4 and vegetation index of both dates.
Two selective standardized PCAs were applied to bands 2 and 4 producing two
second components. All histograms were examined. The values of the images pro-
duced by image subtraction of band 2 and by PCA presented a normal distribution,
the di� erenced image based on band 4 had a non-normal distribution and the
vegetation index di� erencing image presented two separate peaks. Non-normal distri-
butions were mainly due to di� erent spectral responses in the lagoon. For this reason,
pixels corresponding to the water and to the clouds were excluded from the histogram
and statistics calculation through a masking technique. After masking, all histograms
presented a normal or a near-normal distribution and the mean and standard
deviation values for each dataset were calculated.

Threshold levels were determined using both one-step and two-step thresholding
methods in order to compare them. Table 3 shows that independent two-steps
thresholding of the high and low levels allowed only limited accuracy improvement.
Moreover, the two-step thresholding procedure presents some limitations: (1) the
determination of each threshold level is based only on a reduced subset of the sample
points set, and (2) the optimal threshold levels selected independently are not always
the most accurate when assessing accuracy with both levels and the entire sample
points set because the Kappa coe� cient takes into account chance agreement.
However, two-step thresholding can be useful to threshold asymmetric distribution.

Table 3. Standard deviation thresholds and classi® cation accuracy achieved using image
enhancement procedures.

One-step
thresholding Two-step thresholding

Image Optimal Optimal Optimal
enhancement SD Kappa threshold threshold Kappa
procedure threshold coe� cient low high coe� cient

Band 2 di� erencing 1.10 0.4100 1.10 1.10 0.4100
Band 4 di� erencing 1.00 0.2196 0.80 1.00 0.2210
NDVI di� erencing 1.10 0.3831 1.10 1.20 0.3981
SPCA band 2 1.20 0.4109 1.20 1.25 0.4155
SPCA band 4 0.90 0.2225 0.90 1.00 0.2222

SD, standard deviation.
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4.2.2. Procedures based on classi® cations
Unsupervised classi® cation was carried out using the eight bands of the multi-

date image in order to classify the image into 35 clusters and to identify potential
change classes. The resulting classi® ed image of the clustering was displayed and
examined in order to determine the land covers which corresponded to each cluster
for both dates. Land cover classes considered were forest cover, nonforest natural
vegetation, pasture land/agriculture, water and urban area. It can be noticed that
some spectral classes corresponded to various covers with spectral similarities. These
spectral classes were then assigned to the land cover which was the more important.
As a following step, accuracy of the change image was estimated at change/no change
detection and from-to change detection level. At level c̀hange/no change’ detection
the Kappa coe� cient was 0.2850 (with a global accuracy of 80.71% of the pixels
correctly classi® ed) and was 0.3886 in the identi® cation of the nature of the changes
(global accuracy of 61.78%).

A post-classi® cation analysis procedure was carried out using supervised classi-
® cation. Both images were classi® ed into 10 thematic classes (primary forest, second-
ary forest, mangrove, wetland, pasture land, agriculture, water, urban area and
clouds). As a following step, mangroves, primary and secondary forests were grouped
into a single F̀orest’ class. Also pasture land and agriculture were grouped to ® nally
obtain the same thematic classes as considered in the unsupervised classi® cation.
Classi® ed images of 1974 and 1992 were then overlaid in order to generate a change
image and accuracy was determined. At level change/no change detection the Kappa
coe� cient was 0.6191 (and the global accuracy 86.87%) and at level from-to change
identi® cation it was 0.7070 (global accuracy 82.41%). Table 4 shows the confusion
matrix of the change image.

In order to carry out the combination between post-classi® cation comparison
and image enhancement, the change image produced through SPCA of band 2 was
recoded into a binary mask consisting of areas that have changed between the two
dates. The change image obtained by SPCA using band 2 was chosen because it was
the most accurate (table 4). The change mask was then overlaid onto the classi® ed
images and date 2 classi® ed image was taken into account only for those pixels that
were detected as having changed. In the present study this method did not reduce
change detection errors and the classi® ed image is not as accurate as the image
generated by simple post-classi® cation comparison (Kappa coe� cient of 0.6414).

5. Discussion and conclusion

A summary of the results obtained by using these six techniques is given in
table 5. The results of the study can be summarized as follows.

The highest accuracy was obtained using the post-classi® cation comparison based
on supervised classi® cation of the two images. The good performance of this approach
can be attributed to the high classi® cation accuracy of 1974 and 1992 classi® ed
images and to the fact that accuracy has been improved by grouping classes which
presented the most common spectral confusion such as mangrove, secondary and
primary forest.

In single band analysis band 2 data proved to be superior to band 4 for detecting
changes in land cover. The reason for the poor performance using band 4 data is to
be found in the high infrared return from the herbaceous understorey in cleared
areas which produces classi® cations errors (Singh 1986). Vegetation index calcu-
lations allowed similar results as compared to band 2. Based on the same band, the
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Table 5. Comparison of the performances of the change detection procedures.

Change
no change From-to change

level level
Change
detection Global Global
procedure Kappa accuracy Kappa accuracy

Band 2 di� erencing 0.4100 80.40 ± ±
Band 4 di� erencing 0.2210 73.90 ± ±
NDVI di� erencing 0.3981 81.84 ± ±
SPCA band 2 0.4155 82.05 ± ±
SPCA band 4 0.2222 73.20 ± ±
Multi-date classi® cation 0.2850 80.71 0.3886 61.78
Post-classi® cation comparison 0.6191 86.87 0.7070 82.41
Masking+post-classi® cation comparison 0.4201 84.52 0.6414 79.58

SPCA o� ered better accuracy than the image di� erencing procedure. It seems
that SPCA removed inter-images variability due to the sensor and to atmospheric
conditions which still remained after radiometric normalization.

Some authors carried out comparative studies of change detection techniques
and generally found that post-classi® cation comparison was less e� ective than
enhancement procedures such as image regression (Singh 1986) or image di� erencing
and PCA (Muchoney and Haak 1994). An attempt was made to analyse the potential
e� ect of the di� erences in soil moisture and vegetation phenology due to the di� erence
between the dates of capture of the two images (15 February 1974 and 1 April 1992)
in the poor performances obtained by image enhancement procedures. Climatological
data from Isla Aguada were examined for the years 1973, 1974, 1991 and 1992. The
rainfall diagram (® gure 3) shows that the 1974 and the 1992 images were captured
in the middle and at the end of a dry season, respectively. Daily rainfall data show
that there was no signi® cant rainfall during the week previous to the capture of both
images. A similar di� erence of time (2 or 3 months) between the dates of capture of
the two images could have resulted in signi® cantly higher di� erence of climatological
features as, for example, the di� erence between April and June. Rojas-Galaviz et al.

Figure 3. Rainfall diagram for Isla Aguada (1973± 1974 and 1991± 1992).
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(1992) measured the seasonal average of total mangrove litterfall in the Lagoon
region, giving values signi® cantly di� erent between February and April. Nevertheless
there were signi® cant di� erences in soil moisture and vegetation phenology between
both dates. Therefore a large amount of variation of spectral responses was attributed
to these di� erences. Also, it is important to notice that there are important variations
in rainfall from one year to another and that soil moisture and vegetation can be
signi® cantly di� erent at the same time of the year.

Image enhancement procedures were not able to di� erentiate accurately the
variations of soil moisture and vegetation phenology from variations due to land
cover changes. The use of classi® cation techniques avoided this problem. When
carrying out independent supervised classi® cations, classes which present very di� er-
ent spectral signatures at the di� erent dates can be classi® ed into the same land
cover. When using unsupervised multi-date classi® cation, classes which present spec-
tral variation between both dates, but where change is not occurring, can also be
identi® ed although, in the present study spectral classes corresponded to di� erent
classes of changes and, multi-date unsupervised classi® cation did not allow the
accurate identi® cation of the land cover changes. Thus the procedure based on the
comparison of independent supervised classi® cations was found less sensitive to
radiometric variations between the scenes and is more appropriate when dealing
with data captured at di� erent dates. Post-classi® cation comparison also presents
the advantage of giving information about the nature of the changes. Results suggest
that the principal land cover changes in the study area (e.g., deforestation for pasture
development, forest regeneration and conversion of wetlands to agriculture of rice)
can be monitored accurately by remote sensing. In the present study, no attempt
has been made to calculate the rate of change of the di� erent covers from the air
photographs. However, changes such as rapid deforestation are con® rmed by other
studies based on the comparison of land cover maps (Sorani and AÂ lvarez 1996, Mas
1996) and on Landsat TM visual interpretation and intensive ® eld work (Benõ Â tez
et al. 1992, Issac MaÂ rquez 1993 ).
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